SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Höpfner M.) ;pers:(Höpfner M.);pers:(Kiefer M.)"

Search: WFRF:(Höpfner M.) > Höpfner M. > Kiefer M.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Steck, T., et al. (author)
  • Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor
  • 2007
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:13, s. 3639-3662
  • Journal article (peer-reviewed)abstract
    • This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia) science-oriented processor from high spectral resolution data (until March 2004) measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III). Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are generally within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision degrades to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.
  •  
2.
  • Wang, D.Y., et al. (author)
  • Comparisons of MIPAS/ENVISAT ozone profiles with SMR/ODIN and HALOE/UARS observations
  • 2005
  • In: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 36:5, s. 927-931
  • Journal article (peer-reviewed)abstract
    • Ozone volume mixing ratio (VMR) profiles are measured by the Michelson Interferometer for passive atmospheric sounding (MIPAS) on ENVISAT. The data sets produced by the science data processor at Institut fur Meteorologic und Klimaforschung (IMK), Germany are compared with those obtained by halogen occultation experiment (HALOE) on UARS and by sub-millimetre radiometer (SMR) on ODIN. For the stratospheric measurements taken during September/October 2002, the three instruments show reasonable agreement, with global mean differences within 0.1-0.3 ppmv. The typical zonal mean differences are of 0.4 ppmv for HALOE and 0.6 ppmv for SMR (4-6%) in the ozone VMR peak region at 25-30 km near the equator, though larger differences of 0.8-1 ppmv (8-10%) are also observed in a small latitude-altitude region in the tropic. A positive bias of about 0.2-0.4 ppmv in the MIPAS data in the 35-40 km region has also been found. Further studies are under way to explain these differences.
  •  
3.
  • Glatthor, N., et al. (author)
  • Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)
  • 2007
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:11, s. 2775-2787
  • Journal article (peer-reviewed)abstract
    • We use limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVIronmental SATellite (ENVISAT) to derive the first global distribution of peroxyacetyl nitrate (PAN) in the upper troposphere. PAN is generated in tropospheric air masses polluted by fuel combustion or biomass burning and acts as a reservoir and carrier of NOx in the cold free troposphere. PAN exhibits continuum-like broadband structures in the mid-infrared region and was retrieved in a contiguous analysis window covering the wavenumber region 775–800 cm−1. The interfering species CCl4, HCFC-22, H2O, ClONO2, CH3CCl3 and C2H2 were fitted along with PAN, whereas pre-fitted profiles were used to model the contribution of other contaminants like ozone. Sensitivity tests consisting in retrieval without consideration of PAN demonstrated the existence of PAN signatures in MIPAS spectra obtained in polluted air masses. The analysed dataset consists of 10 days between 4 October and 1 December 2003. This period covers the end of the biomass burning season in South America and South and East Africa, in which generally large amounts of pollutants are produced and distributed over wide areas of the southern hemispheric free troposphere. Indeed, elevated PAN amounts of 200–700 pptv were measured in a large plume extending from Brasil over the Southern Atlantic, Central and South Africa, the South Indian Ocean as far as Australia at altitudes between 8 and 16 km. Enhanced PAN values were also found in a much more restricted area between northern subtropical Africa and India. The most significant northern midlatitude PAN signal was detected in an area at 8 km altitude extending from China into the Chinese Sea. The average mid and high latitude PAN amounts found at 8 km were around 125 pptv in the northern, but only between 50 and 75 pptv in the southern hemisphere. The PAN distribution found in the southern hemispheric tropics and subtropics is highly correlated with the jointly fitted acetylene (C2H2), which is another pollutant produced by biomass burning, and agrees reasonably well with the CO plume detected during end of September 2003 at the 275 hPa level (~10 km) by the Measurement of Pollution in the Troposphere (MOPITT) instrument on the Terra satellite. Similar southern hemispheric PAN amounts were also observed by previous airborne measurements performed in September/October 1992 and 1996 above the South Atlantic and the South Pacific, respectively.
  •  
4.
  • Lossow, Stefan, 1977, et al. (author)
  • Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS
  • 2011
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:9, s. 1855-1874
  • Journal article (peer-reviewed)abstract
    • Measurements of thermal emission in the mid-infrared by Envisat/MIPAS allow the retrieval of HDO information roughly in the altitude range between 10 km and 50 km. From June 2002 to March 2004 MIPAS performed measurements in the full spectral resolution mode. To assess the quality of the HDO data set obtained during that period comparisons with measurements by Odin/SMR and SCISAT/ACE-FTS were performed. Comparisons were made on profile-to-profile basis as well as using seasonal and monthly averages. All in all the comparisons yield favourable results. The largest deviations between MIPAS and ACE-FTS are observed below 15 km, where relative deviations can occasionally exceed 100%. Despite these deviations in the absolute amount of HDO the latitudinal structures observed by both instruments are consistent in this altitude range. Between 15 km and 20 km there is less good agreement, in particular in the Antarctic during winter and spring. Also in the tropics some deviations are found. Above 20 km there is a high consistency in the structures observed by all three instruments. MIPAS and ACE-FTS typically agree within 10%, with MIPAS mostly showing higher abundances than ACE-FTS. Both data sets show considerably more HDO than SMR. This bias can be explained basically by uncertainties in spectroscopic parameters. Above 40 km, where the MIPAS HDO retrieval reaches its limits, still good agreement with the structures observed by SMR is found for most seasons. This puts some confidence in the MIPAS data at these altitudes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view